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Abstract—A numerical formulation based on the weighting function scheme is developed in the present
investigation for convection—conduction phase change problems. The solid phase is regarded as a liquid
having an infinite viscosity. Such a treatment allows the stream-vorticity formulation to apply over the
entire physical domain including the liquid—solid interface. The weighting function scheme then is used to
handle the sharp viscosity jump at the liquid-solid interface. A problem dealing with pure tin is employed
to test the performance of the present method. The predicted interface profiles are found to agree with
available experimental data qualitatively. The computation effort required by the present numerical
technique, however, is less than 2% of that needed by a two-region method for this same problem. Unlike
the existing single-region methods, the present numerical technique produces smooth streamlines and
isotherms even in the vicinity of the solidification front.

INTRODUCTION

It HAS been well recognized that natural convection
in the liquid phase of a phase change material (PCM)
could have a significant effect on the moving speed
and the shape of the liquid—solid interface [1-3]. This
is true even for liquid metals that possess small Prandtl
numbers. To study the effect of natural convection on
phase change processes, many numerical inves-
tigations [4-15] have been performed. The numerical
techniques employed in these studies can be classified
into two-region [4-8] and single-region [9-15]
methods.

In two-region methods, two independent sets of
conservation equations are derived for each of the
liquid and solid phases. An appropriate energy bal-
ance at the liquid—solid interface then is employed to
couple the two sets of governing equations. Such a
numerical formulation produces smooth isotherms
and streamlines in the vicinity of the liquid—solid inter-
face. However, the liquid-solid interface has an
irregular shape varying from time to time in most
practical phase change problems. Under this
situation, both liquid and solid phases might have
irregular domains with a Dirichlet boundary con-
dition at the liquid-solid interface. Hence, an
algebraic coordinates transformation [4-7] or boun-
dary-fitted curvilinear coordinates [8] is needed for
each of the ligquid and solid regions. This renders
the use of the two-region methods very complicated.
Therefore, some simplification dealing with the geo-
metric regularity of the interface is generally needed
as demonstrated by Sparrow et al. [4]. In addition,
the governing equations based on a two-region
method will become singular when either the liquid or
solid phase does not exist. Thus, additional assump-

tions such as used in refs. [5, 16] are needed at the
very beginning and the final step of the solidification
process.

To circumvent the numerical difficulties encoun-
tered in the use of the two-region formulations, a
few single-region methods such as refs. [9-15] have
been developed. In these single-region methods, the
evolution of the latent heat during the solidification
process is embedded in the local enthalpy change rate
0H/0t. Such a treatment has been proven to auto-
matically satisfy the conventional energy balance con-
dition at the liquid-solid interface [17]. Therefore, a
single set of governing equations can be applied on
the entire physical domain including the liquid-solid
interface. The method proposed by Schneider [9] was
derived by introducing a method for fluid flow [18]
into the enthalpy-like model [19]. Voller and co-work-
ers [10, 11] separated the latent heat from the sensible
heat such that the sensible heat became a continuous
function across the liquid—solid interface. This treat-
ment allowed the well-known SIMPLE algorithm [20]
to be implemented in their enthalpy formulation.
Bennon and Incropera [12, 13] developed a continuum
model by integrating semi-empirical laws with classi-
cal mixture theory. The mushy zone was formulated
as a porous medium. Depending on the value of the
liquid fraction, the permeability has a positive finite
value in the mushy zone. The value of permeability is
zero in the solid phase and becomes infinite in the
liquid. A similar volume-averaged formulation was
proposed by Beckermann and Viskanta [14] for phase
change in porous media. This model is able to handle
phase change in a PCM without a porous matrix, if
the porosity is assigned unity. Based on the enthalpy
method developed in refs. {10, 11], Brent er al. [15]
proposed the enthalpy-porosity technique by treating
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NOMENCLATURE
a weighting {actor defined in equation (12) " artificial viscosity for the stream function
dg right-hand side of equation (12) & tolerance in convergence criterion
Cp specific heat at constant pressurc n dimensionless local orthogonal

Dkg "K']

¢, dimensionless specific heat, Cp/(C,);

¥a dimensionless latent heat or fraction of
liquid phase, (H—A)/AH

g gravitational acceleration, 9.81 m's -

Gr Grashof number, fg(T,— T L (p/uf)*
modified Grashof number,

(A=A NTo—T) (C, ' Gr

H total enthalpy [J kg™ ']

AH latent heat [J kg ']

k thermal conductivity [Wm~ 'K ']
L width of the enclosure

P static pressure [N m ]

p dimensionless pressure, Pp(L/uf)”
Pr Prandtl number. p*/x

S height of the enclosure

s aspect ratio of the enclosure, S/L
Ste  Stefan number, (A,— A, )/AH

T temperature ["C]

T,. T, reference temperatures ["C]
t time
1 characteristic time, pL2/ (oK)

U,V velocities in the x- and y-directions,
respectively [ms ']

u, v dimensionless velocities. U/V, and V[V,
respectively

V. characteristic velocity, u*/(pL)

X. Y horizontal and vertical coordinates [m]

x.y dimensionless coordinates, X/L and Y/L.
respectively

Ax, Ay step sizes in x- and y-coordinates,
respectively.

Greek symbols

2 dimensionless dynamic thermal
diffusivity, x/k;
p volumetric coefficient of thermal

expansion [K ']

coordinate normal to the liquid—solid
interface. see Fig. 3

0 dimensionless temperature in the liquid.
(T—TOH(Ty—T))
K dynamic thermal diffusivity, k/C,

A sensible heat, {7 C, dT [J kg ']
A,  sensible heat at T, {J kg ']

J dimensionless sensible heat.
(A=A /(A=A )
IT; dimensionless dynamic viscosity, u*/uf
o* dynamic viscosity [kgm 's ]
¢ dimensionless local orthogonal

coordinate tangent to the liquid-sohd
interface, see Fig. 3 [m]
o density fkgm 7]

o Stei(1+ Ste)
T dimensionless time, /7,
¢ local inclination angle of the interface
W dimensionless stream function,
w = CyiCrand v = — &Y 0x
© dimensionless vorticity, Cu/cy —év/0x.
Superscript
0 solution at the previous iteration.
Subscripts
E cast
{ quantity based on the freezing point T
1 property of the liquid phase at the
freezing point T
N north
p point P
S south
' west
x.y  partial derivatives with respect to x and
0 quantity based on T, or solution at

previous time step 7.

L

the mushy zone as a porous medium. Such an idea is
essentially the same as that used in refs. [12, 13].
A survey on recent developments on phase change
problems can be found in the review paper by
Viskanta [21].

Although the literature on the methodology for
single-region formulation is continuously growing,
most of them pose serious numerical difficulties. As
can be clearly observed from the results presented in
the literature, all of the existing single-region methods
[9-15] produce zigzag isotherms and streamlines in
the vicinity of a liquid-solid interface. This numerical
error has been proven to arise from improper handling

of the evolution (or absorption) of the latent heat [22].
The poor solution convergence rate encountered in
the use of the existing single-region methods might bec
also attributed to this same reasoning. In the present
investigation, the enthalpy method proposed in ref.
[22] will be extended such that the effect of natural
convection can be taken into account ina PCM having
a distinct freezing point. The solid phase is regarded
as a liquid that has an infinite viscosity. The weighting
function scheme [22] then is used to handle the sharp
discontinuity in the viscosity. Physically speaking, in
a plane front solidification (or melting) the velocity
has a discontinuous gradient at the liquid-solid inter-
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to the no-slip condition, whereas the velocity field is
identically zero on the solid side. Such a physical
phenomenon can be easily implemented through the
use of the weighting function scheme [22]. The per-
formance of the present method will be examined by
comparing the present prediction with the exper-
imental data of Wolff and Viskanta [7].

THEORETICAL ANALYSIS

In their investigation, Wolft and Viskanta [7] per-
formed an experiment to study a two-dimensional
solidification of pure tin (99.99% pure) in a rec-
tangular enclosure. Measurements including the
shape of the liquid—solid interface and the temperature
distribution in the | liq‘diu puaau were undertaken for
a series of time instants. A numerical solution based
on the two-region method of Ramachandran et al. [5]
was also obtained for the same physical configuration.
The results presented in ref. [7] are quite complete
indeed as compared to previous works on phase
change problems. Thus, it is convenient to employ the
problem studied by Wolff and Viskanta [7] to examine
the performance of the present method.

Consider a pure liquid tin of uniform temperature
T, inside a two-dimensional rectangular enclosure
(0 € X < Land 0 £ Y < S) with perfect insulation at
both horizontal walls (¥ = 0 and S). At time ¢ > 0,
the temperature of the vertical wall at X' = L is cooled
to a uniform temperature 7, that is below the freezing
point T} of the pure tin, while the other vertical wall
(X = 0) is maintained at 7. Solidification thus starts
from the cold wall. In the present physical problem,
these would be free of thermal and alloy dendrites [23]
because the working medium in the liquid phase is a
superheated pure substance. Hence, it is reasonable
to assume a plane front solidification. This and other
assumptions needed in the analysis are listed as
follows:

(1) the liquid tin is a Newtonian fluid ;
(2) the density of the pure tin is constant in the

entire physical domain (p = p,

the buoyancy term in the momentum equation ;

(3) the shrinkage-caused flow is negligibly small as
compared to the buoyancy-driven flow;

(4) the Boussinesq approximation is valid ;

(5) the flow in the melt is laminar and two-dimen-
sional ;

(6) the liquid—solid interface has a smooth profile.

. = constant) excent for
consiant) exceptior

Based on these assumptions and the dimensionless
transformation

. v v/ rrivs L PdR V4

x=X/L, y=Y/L, u=UlV, v=V[V.
=u*/(pL), p=Po(Liu*)?, n=p*/u*
A= (A=A A —AL), o=k/K
S=(H-N/AH, t=tt, t =pL*/(ox)
=(T-T)/[(T,~T;), s=S8/L )

L% ®
ox Oy
o du  Ou op 2@/5h\
Pro T ax T T " ax e \Fax)
Ie} ou) o 6o
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Pr, 01 u@x oy dy

é v 0 v a Ju
+ w(ﬂa) +2 ( 61}) + 3x (#;y) @

(]—(!)—6{4-0%?4‘1)!‘;,4%
B 2 ()

y 6x\ ax/ oy \ 6y/
The associated boundary conditions are
u=0, v=0, A=1 att=0
u=0, v=0, A=1 atx=0and7t>0
u=0, v=0, A=0 atx=1landt>0
u=0, v=0, 04/oy=0 aty=0andz>0
duldy=0, v=0, difdy=20

aty=sandt>0. (6)

In equations (3)—(5), the parameters Pr,, Gr and o are
defined by

Pry = piliy = Pr(T7")
Gr = p’gB(T,— ToL [(w*)®
a = Sip/{) L St Ceo — (A _ A YALIF N
g el d Ty, Ol = (iyg T v jj0dT. \/)

As remarked by Wolff and Viskanta [7], a free surface
forms on the top of the melt region at > 0 due
to the shrinkage of the pure tin (about 4.2%) when
solidified. Hence, in equations (6) a no-shear bound-
ary condition is assumed at y = 5. It is noted that
equations (3), (4) and the velocity boundary con-
ditions specified in equations (6) will reduce to
u=v=0 if an infinite value is assigned to the
viscosity. Thus, the system of governing equations
(2)~(6) is valid also in the solid phase as long as the
solid is regarded as a liquid of infinite viscosity.

To simplify the problem, the pressure is eliminated
from equations (3) and (4) to yield
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where the stream function ¢ is defined such that
u=0ayjéy and © = —0Y/dx. The vorticity is defined
by @ = Cujcy—cr/cx. Based on this definition. the
initial and boundary conditions for the stream function
and the vorticity can be written as

o Cw
Pry ¢t

=0 o=0 att =0

=0, w=7%/0x" atx=0and}

W=0. w=7Niey aty=0

=0 w=0 aty =g, (1M
Note that in equation (8) the simple notations

. = cujCx and p,. = éu/Cy have been used. The pa-
rameter  Gr* = pgB(Ay—A LY /(Co)(pf)? is a
modified Grashof number and ¢, = Cp/(Cp), is a
dimensionless specific heat. 1t appears that equation
(8) reduces to V2w = 0 in the solid phase, if the vis-
cosity of the solid phase is assumed uniform and infi-
nite. Thus. the vorticity will be zero in the solid phase
as long as the vorticity has a zero value at all of the
boundaries of the solid phase. In equation (9), the
artificial viscosity 7 and the dimensionless latent heat
f are defined by

=0 if
F=1 if

v =  and

i

(11a)
(11b)

i<

o=

j and Ly
for the solid and liquid phase, respectively. Hence,
equation (9) guarantees a zero velocity field for the
solid phase due to an infinite viscosity, whereas for
the liquid phase, cquation (9) becomes the stream
function equation as in conventional stream—vorticity
formulations. The use of the artificial viscosity 7 is
very important in treating the discontinuity of the
velocity gradient normal to the liquid—solid interface.
This will be demonstrated later. Mathematically, equa-
tion (9) can be applied on the entire physical domain
including the liquid-solid interface. When a numerical
scheme is applied, however, the f-value possesses a
discontinuity inside a finite control volume covering
both liquid and solid phases. Thus, care must be exer-
cised in evaluating the f-value for such a control volume.

Equation (9), in fact, is identical to heat conduction
in a two-dimensional compositc material with heat
generation if the liquid and the solid phases are treated
as two different materials and the stream function ¥
and the vorticity w are regarded as temperature and
heat sink, respectively. It is noted that the vorticity »
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has a finite value in the liquid phase and a zero value
in the solid phase (due to a zero velocity). Thus. the
heat sink is needed to consider for the hiquid phasc
only. For convenience. the value of the vorticity in the
solid phase of a finite control volume covering both
liquid and solid phases is assumed equal to that of the
liquid phase inside this same control volume. Such an
assumption would overestimate the heat sink for that
control volume. Thercfore, this heat sink should be
multiplicd by the liquid fraction inside the control
volume. This can be achieved casily by treating the

/f-value appearing in equation (9) as the liquid fraction

inside the control volume. A simple method for the
evaluation of the f~value can be found in ref. [22].

METHOD OF SOLUTION

Equations (5), (8) and (9) along with the boundary
conditions (6) and (10) constitute a system of coupled
non-lincar partial differential cquations. In this system
of equations, both real and artificial viscosities (u and
»} have an infinite value in the solid phase. Thus, there
exists sharp discontinuities in the g and - values at the
liquid-solid interface. Fortunately. such  dis-
continuities can be effectively handled by the use of
the weighting function scheme developed in ref. [22].

Figure 1 shows a grid with schematic liquid-solid
interfaces. The dashed curve represents an interface
such that point P is located in the solid region, whereas
the solid curve stands for the case that point P is in
the liquid region. Based on the symbols defined in Fig.
1, the weighting function scheme {22] for equation (9)
can be expressed as

Ay + e tdglrs + anfn dpfp = ag
aw = (W,Ax) ap = (EAX)

as = (SAY) . an = (NAy) !

ay = (fw),,

* M1
W, = J - dy, £ = J 5 dx
W Py

L >
S; = J - dy, N, = J K dyr.
S g [

The notation used here is the same as that in ref.
{22]. For convenience, however, the names of the grid
points are used to define the boundaries of the inte-
grals. Suppose the interface passes through points N*
and W* (see the dashed curve) such that points P, S
and E are located in the solid region while points W
and N are in the liquid region. From equations (12),
one sees that the ‘thermal resistances’ are

Up = — Uy — Ay —Ug = .

(12)

B. Obviously, the thermal resistance is zero in the
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FiG. 1. A grid cell with a schematic liquid-solid interface in
case point P is in solid phase (dashed curve) and point P is
in liquid phase (solid curve).

intervals P-S and P-E due to a perfect ‘thermal con-
ductivity’ (y = o0), whereas that in the intervals P-N
and P-W is non-zero. Under such a situation, the
weighting factors ay, and ay will be negligibly small
as compared to ag = oo and ag = . As a result, the
y-value in the solid region (point P) is independent of
that in the liquid region. This leads to ¥ = 0 for the
solid phase due to the homogeneous boundary con-
ditions (10) around the solid region. Thus, the /-value
at a point can be directly assigned zero if that point
is located in the solid region. In case point P is in the
liquid phase when the interface goes through points
E* and S* as illustrated by the solid curve, the total
‘thermal resistances’ become

W,=WP, E,=PE*+E*E/y=PE*

S, = SS*/y+S*P =S*P, N,=PN. (14

From equations (14), one sees that the thermal resist-
ance in the interval P-E is equal to that in the interval
P-E* due to a perfect thermal conductivity in the
interval E*-E. This is equivalent to assigning
e« =Yg = 0. Generally speaking, the y-value at
point P would not be zero such that a discontinuity
in the velocity gradient exists at the interface. This will
cause a vorticity discontinuity across the liquid—solid
interface. When points W, E, S, N and P are all at the
liquid phase, equation (9) reduces to V2§ = o such
that it can be solved as in a conventional problem
without phase change.

Like the stream function, the vorticity in the solid
phase is identically zero. On the liquid side of the
liquid-solid interface, however, there exists a non-
zero boundary vorticity due to a friction force arising
from the no-slip condition. This implies that the vor-
ticity is not a continuous function across the liquid—
solid interface. Thus, the boundary vorticity at the
interface must be estimated before equation (8) is
solved. To accomplish this, let (£, 1) be local orthog-
onal coordinates located at point E* with # normal to
the interface represented by the solid curve as shown
in Fig. 1. Assume the grid cell is sufficiently small such

1507

that the profile of the liquid-solid interface inside the
grid cell can be approximated with a straight line.
Based on this, the boundary vorticity at point E* is
computed from

Wes = 02 JOX2 + 8% /0y* = 0™jon*  (15a)

or
Wes = (sin~ 2 @) Y /ox?

where ¢ is the inclination angle of the liquid—solid
interface measured from the horizontal. Similarly, the
boundary vorticity at point S* is

wse = (cos™ > §) 87y/oy*. (16)

In the solution procedure, the vorticity at point E is
assigned as wg = wg. while the concept of infinite
viscosity is applied in the interval E*-E. It should be
noted also that all of the vorticity in the solid region
must be directly assigned zero except for a few points
near the interface like point E. This treatment is only
for numerical convenience. The real vorticity,
however, is still zero at point E. After equations (5)
and (8) are discretized by the use of the weighting
function scheme [22], the resulting algebraic equations
as well as equations (12)—(14) for the stream function
can be solved by the SIS solver [25]. At each time
step, the computations should be repeated until the
solutions satisfy the convergence criteria

Max |y —y°|

(15b)

[Max y—Min y| <% (172)
Max |0 —w°|

Max o—Mina| bo (176)

Max |A—4° < ¢; (17¢)

where ¥/°, @°® and A° denote the solutions at the pre-
vious iteration. The values of the tolerances ¢, ¢, and
¢, are not necessarily the same. For convenience, the
present algorithm is summarized as follows.

(1) Guess A(x, y) and w(x, y) at time 7.

(2) Locate the interface and compute the f-value
for each control volume.

(3) Solve the stream function y(x,y) from equa-
tions (12)—(14).

(4) Evaluate the velocity components by u = dy//dy
and v = —0Y/dx.

(5) Find the vorticity along the boundaries of the
liquid region and solve equation (8) to obtain w(x, y).

(6) Renew A(x, y) from equation (5).

(7) Check the convergence criteria (17). If the cri-
teria are satisfied, then go to the next step. Otherwise,
return to step 2.

(8) If T = 1,,,,, then stop the computations. Other-
wise, let Y, = ¥, 0w, = @, 1y = Aand f, = f and return
to step 1 for the next time step.

RESULTS AND DIiSCUSSION

Numerical results were obtained for the cases of
(To, T.,)=1(233°C, 229°C), (233°C, 226°C) and
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Table 1. Thermophysical properties of pure tin

Freezing point T; = 231.9°C

Density p, = 6992 kg m ™"

Latent heat AH = 59.50 kJ kg !
Expansion coefficient § = 1.060x 10" * K '

Dynamic thermal diffusivity [kgm 's ']

K=0.2923-3.695x 10 *T 7' 2319
K=00011+759x 10 T 722319
Specific heat [J kg™ ' K ']
Cp=2151+0.22T 7<2319
Cp=12554 7>2319
Dynamic viscosity [kgm 's |
W= T <2319
u* =3.004x 107 ~553%x10 °T
+3.74x10°°T" T=2319
Prandtl number
Pr= o T <2319
Pr=2729%10 ?=5713x10°°T
+3.89x107%T" 722319

(234°C, 226°C) in an enclosure having the size
L = 8.89 cm and the aspect ratio s = 0.75. Their cor-
responding (Ste, Gr*, A,) values are, respectively,
(0.0177, 3.977x 107, 0.7329), (0.0310, 6.985x 107,
0.8479) and (0.0353. 7.950x 107, 0.7449). These
ranges of temperature give rise to a superheat in the
liquid phase and a subcool in the solid phase (i.c.
T; = 231.9°C for pure tin). Table 1 shows the thermo-
physical propertics of the pure tin used in the com-
putations. The Prandtl number Pr, in the energy equa-
tion (5) has the value of 0.01613 for pure tin. Such
information has been well documented in the litcra-
ture [26, 27].

1.896 h
Vo= —249.4

FI1G. 2. Streamlines with an increment of Ay = 40 for (7,
7,) = (233°C, 229°C) at (a) = 0.165 h and (b) 1 = 1.896 h.

W. Y. Raw and S. L. Lek

Figurc 2 reveals the streamlines for the case of (7,
7,)=(233"C, 229°C) at t = 0.165 and 1.896 h. The
minimum t-value in Fig. 2(a) is —409.5. This means
that the natural convection at = 0.165 h is a clock-
wise circulating flow with a strength of 409.5. The
liquid tin near the interface (where ¥ = 0) is cooled
such that it gains a downward velocity due to an
increase in the density. In contrast. the liquid tin
obtained an upward driving force on the vicinity of
the heated wall (x = 0). Thus. a clockwise circulating
flow forms in the liquid region. At 7 = 1.896 h, the
strength of the natural convection reduces to 249.4
owing to the diminishing of the liquid phasc as observ-
able from Fig. 2(b).

The corresponding isotherms (4 = constant) of Fig.
2 are presented in Fig. 3. The dashed curve labelled
with 4 = 0.7329 is the liquid—solid interface. As shown
in Fig. 3(a). the interface profile is essentially a vertical
straight line at ¢+ = 0.165 h. However. the strong cir-
culating flow distorts the isotherms in the liquid
region. In a region near the top surface, the hot liquid
flows from the heated wall towards the interface. The
isotherms having 2 = 0.9 thus bends to the right. This
causes a large temperature gradient normal to the
interface such that the solidification rate is depressed.
With a similar reasoning, the solidification has a faster
speed at the bottom of the enclosurc. Therefore, the
liquid-solid interface has a sinuous profile at 7 = 1.896
h (sec Figs. 2(b) and 3(b)).

As mentioned earlier. a no-slip velocity prevails at
the top of the liquid at the very beginning of the
solidification process. This particular boundary con-
dition will retard the fluid flow. Thus. a faster sol-

(a)t=0.185 h

(b)t=1.896 h

0.7329
0.0

F1G. 3. Isotherms with an increment ol Az == 0.1 for (7.
T,) = (233°C,229°C) at (a) 1 = 0.165 hund (b) f = 1.896 h.
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F1G. 4. Interface profiles for (T, T,.) = (233°C, 229°C) at
t =0.077, 0.165, 0.529, 1.462 and 1.896 h (from right to
left).

idification speed at the top of the liquid can be
expected if the no-slip boundary condition is used
instead of the no-shear boundary condition. To exam-
ine such a difference, the interface profiles based on
each of the two different boundary conditions are
compared in Fig. 4. The five curves from right to left
are, respectively, for ¢t = 0.077, 0.165, 0.529, 1.462 and
1.896 h. From Fig. 4, one sees that the interface pro-
files indeed are not very sensitive to this boundary
condition. )

Figure 5 shows comparisons of the present interface
profiles (no-shear) with the numerical results and the
experimental data of Wolff and Viskanta [7]. The
experimental data [7] are denoted with symbols.
Again, the five interface profiles of each result are for
t=10.077,0.165, 0.529, 1.462 and 1.896 h (from right
to left). However, the numerical predictions of Wolff
and Viskanta [7] (the dashed curve) was only up to
t=1.462 h. In their numerical study, Wolff and
Viskanta [7] employed the two-region method [5] with

9 T I T [ T I T l T | T I i I t I 1
8 '_ [ Present study _—
L .DA;‘)} Wolff and Viskanta [7] -
7T -
| INES : '51 o
8 =l -
7l il
- o ]
\U/ 5 1 I| :
L o i
- 4 - A | :o —
- / (a) -5
& Ij®
3 - o | -
! .
i J f
2 * -
| | 4
1 > |
i 7 ]
o Lol I8 I
0 1 6 7 8 889

Fig. 5. Comparisons of interface profiles for (7T,
T,) = (233°C, 229°C) at ¢ = 0.077, 0.165, 0.529, 1.462 and
1.896 h (from right to left).

1509

the assumption that the curvature of the interface
profile was negligibly small. Unfortunately, this
assumption led to an interface having a cavity of larger
curvature at = 1.462 h (see Fig. 5). In fact, no cavity
could be found in the experiment. Wolff and Viskanta
[7] attributed this cavity to the no-slip boundary con-
dition employed in their computation. However, in
the use of the present numerical technique both no-
slip and no-shear boundary conditions do not give
rise to any cavity on the interface (see Fig. 4). Thus,
the cavity predicted in ref. [7] is believed to arise
from the numerical error of the two-region method
employed [5].

From Fig. 5, one sees also that the measured data
has a smaller value than the present prediction does
at the earlier times ¢ = 0.077 and 0.165 h. This might
be attributed to the thermal inertia of the experimental
setup. As reported by Wolff and Viskanta [7], in their
experiment approximately 0.033 h (0.033/0.077 =
42.9%) elapsed before the desired temperature T,
was reached at the cold wall. Also, at the bottom of
the test region the imperfect insulation might have
speeded up the solidification rate as remarked by
Wolff and Viskanta [7]. This might account for the
fact that the measured solidification thickness is larger
than that of the present prediction in the vicinity of
the Pyrex glass plate that forms the bottom of the test
region (y = 0), especially at = 0.529 h. At a later
time, say ¢ = 1.896 h, the liquid region becomes quite
narrow while its superheat is still maintained at
To— T; = 1.1°C. This implies that the horizontal tem-
perature gradient in the liquid region would increase
as the solidification proceeds. The solidification speed
thus is depressed until an equilibrium solidification
thickness is accomplished eventually. Under this situ-
ation, the heat loss from the bottom could be com-
pensated by the heating boundary condition imposed
at x = 0. Thus, good agreement between the exper-
imental data [7] and the present prediction can be
once again observed at 1 = 1.896 h.

To examine the uncertainty in Wolff and Viskanta’s
experimental data [7], their measured solid-phase
thickness vs time is presented in Fig. 6 for the three
representative heights y/s = 0.0, 0.5 and 1.0. The pre-
sent result is also plotted in Fig. 6 for comparisons.
From Fig. 6, it is seen that the present numerical
method predicts a smoothly increasing solid thickness
with a decreasing solidification speed. This is con-
sistent with the physical reasoning for a PCM having
a distinct freezing point (see Fig. 4 of ref. [22]). The
measured solid thickness, however, has a zigzag vari-
ation in the time coordinate especially at the bottom
of the test region (y = 0). Nevertheless, a qualitative
agreement between the present predictions and the
experimental data [7] is observable from Fig. 5.

The predicted liquid temperatures based on no-
shear and no-slip conditions are compared with the
measured data in Fig. 7 for ¢ = 0.077 h and in Fig. 8
for t = 0.529 h. Figures 7 and 8 clearly reveal that the
no-shear condition decreases the temperature due to
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FiG. 6. Variation of solid thickness at v/s = 0.0. 0.5 and
1.0 for the case (T,. T, ) = (233 C, 229 O).

an enhanced heat transfer. However, it gives rise 1o a
larger temperature gradient normal to the interface at
the height y/s = 0.9. This is the major reasoning why
the solidification speed based on no-shear is slower
than that based on no-slip, although it is not so sig-
nificant (see Fig. 4). From Fig. 7, the mcasured data
arc seen to be considerably smaller than the predic-
tions. Fortunately, this discrepancy is greatly
improved in the region of y/s > 0.5 at a later time
t = 0.529 h as shown in Fig. 8. In fact, the discrepancy
between the measured temperature and the prediction
1s within the error of the measurement. The thermo-
couple used by Wolffand Viskanta [7] has an accuracy

of +0.1"C wherecas the superheat in the liquid tin of

their experiment is only 1.1 C.

To investigate the effect of the subcool in solid, the
computations were repeated with 7, = 226°C. This
implies that the subcool in the sohid 1s increased from
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FiG. 7. Comparison of liquid temperatures for p/s = 0.1,

0.5and 0.9 at 1 = 0.077 h.
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FiG. 8. Comparison of liquid temperatures for 1/s = 0.1,
0.5and 0.9 at 1 = 0.529 h.

2.9 10 5.9°C while the supecrheat is maintained at
1.1°C. Figure 9 illustrates the resulting interface pro-
files based on the no-shear condition for various time
instants ¢ = 0.077, 0.165. 0.529, 0.799 and 0.931 h
(from right to left). The measured data [7] for the
same time instants are also plotted in Fig. 9 for com-
parison. A similar work for the case (T, T,) =
(234°C, 226°C) was performed to study the effect of
superhcat in the liquid. The results of interface profiles
are shown in Fig. 10 for r = 0.077, 0.165. 0.529, 1.146
and 1.462 h (from right to left). In the latter case, the
superheat in the liquid and the subcool in the solid
are, respectively. 2.1 and 5.9 C.

On comparing the predictions in Fig. 9 with that in
Fig. 5, one sees that increasing the subcool of the solid
will speed up the solidification. This gives risc to a
faster diminishing for the liquid region such that the
effect of the natural convection in the liquid region is
decreased. Thus, the interface profiles in Fig. 9 arce
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FI1G. 9. Interface profiles for (7. 7',) = (233°C. 226 C) at
t=0.077.0.165.0.529.0.799 and 0.931 h (from right to left).
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flatter than that in Fig. 5. This trend is reversed when
the superheat in the liquid is increased as can be seen
by comparing the predictions in Figs. 9 and 10. As
pointed out by Wolff and Viskanta [7], the heat loss
from the bottom of the test region could be an impor-
tant error source for their measurement. This is even
worse when the subcool of the solid is increased (sec
the measured data at y = 0 and ¢ = 0.931 hin Fig. 9).
It is interesting to note that the results presented in
Fig. 10 are based on both large superheat and large
subcool. As a result, the heat loss enhances the sol-
idification speed in the vicinity of y = 0 at earlier time
(t < 0.529 h). At later time (¢ > 1.146 h), however,
the heated wall (x = 0) has a strong depression on the
solidification as mentioned earlier. This might account
for the fact that the agreement between the measured
data and the present prediction in Fig. 10 is quite
good at the initial and final times, but very poor at
intermediate times.

In the present computations, a uniform grid system
with 41 x 31 grid points (i.e. Ax = Ay = 0.025) was
used for the first case (7T, T,) = (233°C, 229°C).
However, the numerical solutions were found essen-
tially unchanged when the step size was doubled
(21 x 16 points). Hence, the step size Ax = Ay = 0.050
was employed for the other two cases (7,
T,) = (233°C, 226°C) and (234°C, 226°C). A variable
step size was employed in the time coordinate such
that numerical results for some particular time in-
stants (e.g. 7 = 0.077, 0.165, 0.529, 1.462 and 1.896 h)
could be obtained. Fortunately, the numerical solu-
tion was not sensitive to the time steps either. Hence,
large time step sizes (only 32 time steps for Fig. 4, 35
steps for Fig. 9 and 50 steps for Fig. 10) were used in
the present computations. For the present problem,
the optimum SOR values required by the SIS solver
[25] were found in the range of 0.2-0.6 for the stream
function, 0.1-0.3 for the vorticity and 0.1-0.25 for the
enthalpy. In all of the computations, the convergence
criterion ¢, = &, = 0.005 and ¢, = 0.0005 was used.
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In their numerical study, Wolff and Viskanta {7]
employed the two-region method [5] with stream—
vorticity formulation for the liquid flow. A grid system
having 31 x 31 grid points was used in each of the
liquid and solid regions for the case of (T,
T.) = (233°C, 229°C). Numerical results were
obtained only up to ¢t = 1.462 h. For such a compu-
tation, a very large computational cost (7.08 CPU h
on a CYBER 205 supercomputer) was reported.
Hence, only one case was computed in their study. In
the use of the present method, however, only 0.73
CPU h were required on a CYBER 840 computer for
this same case with 41 x 31 grid points and 32 time
steps (up to £ = 1.896 h). Thus, the computation effort
needed by the present method is less than 2% of that
needed in ref. [7]. The high efficiency of the present
method seems to come from the combined effects of
the particular treatment on the latent heat [22], the
single-region formulation with the weighting function
scheme [22] and a strongly implicit solver [25]. As a
final note, it is mentioned that the present numerical
technique produces smooth streamlines and isotherms
(4 = constant) even in the vicinity of the liquid-solid
interface. This is a unique feature of the present
nurmerical technique among the existing single-region
methods [9-15].

CONCLUSIONS

The enthalpy formulation developed in ref. [22] is
extended in the present investigation for convection—
conduction phase change problems. The solid phase is
regarded as a liquid of infinite viscosity. The weighting
function scheme then is employed to treat the sharp
viscosity jump across the liquid—solid interface. Also,
an artificial viscosity is introduced to the stream func-
tion equation to allow for a shear stress at the inter-
face. From the results of computations for a sol-
idification of pure tin, the following conclusions can
be drawn:

(1) Unlike the existing single-region methods, the
present numerical technique produces smooth stream-
lines and isotherms even in the vicinity of the liquid—
solid interface.

(2) The present predictions are not sensitive to the
spatial and time step sizes.

(3) The computation effort required by the present
technique is less than 2% of that needed by the two-
region method [7] for the same problem.

(4) No cavity is predicted at the liquid-solid inter-
face. This agrees with the experimental data [7]. Thus,
the cavity produced by the two-region method [7]
at the liquid-solid interface is believed to arise from
numerical errors.
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APPLICATION DU SCHEMA DES FONCTIONS DE PONDERATION AUX PROBLEMES
DE CONDUCTION-CONVECTION AVEC CHANGEMENT DE PHASE

Résumé—Une formulation numérique basée sur le schéma des fonctions de pondération est développée
pour les problémes de conduction—convection avee changement de phase. La phase solide est considéree
comme un liquide ayant une viscosité infinie. Cela permet d"appliguer la formulation fonction de courant-
vorticité 4 tout le domaine physique en incluant Uinterface liquide-solide. Un probléme avee de I"¢tain pur
est considéré pour tester les performances de la présentc méthode. Les profils calculés de Vinterface
s'accordent qualitativement avec les données expérimentaies disponibles. L'investissement de calcul est de
2% inférieur & ce que demande la méthode des deux régions pour le méme probléme. Contrairement aux
méthodes existantes 4 une seule région. les lignes de courant et les isothermes sont continues méme au
voisinage du front de solidification.
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ANWENDUNG VON GEWICHTUNGSFUNKTIONEN AUF PROBLEME DES
PHASENWECHSELS MIT KONVEKTION UND WARMELEITUNG

Zusammenfassung—Die vorliegende Untersuchung beschiftigt sich mit Konvektion und Wirmeleitung
beim Phasenwechsel. Hierzu wird mit Hilfe von Gewichtungsfunktionen ein numerischer Ansatz formuliert.
Die feste Phase wird als Flussigkeit mit unendlich groBler Zihigkeit betrachtet. Dieses Vorgehen erlaubt
die Anwendung des Stromfunktion-Wirbeltransport-Verfahrens im gesamten Bereich einschlieBlich der
flissig/festen Grenzfliche, Die Gewichtungsfunktionen werden zur Darstellung des starken Zahig-
keitssprunges an der fliissig/festen Grenzfliche angewandt. An einem Beispiel mit reinem Zinn wird die
vorliegende Methode iiberpriift. Die ermittelten Grenzflichenprofile stimmen qualitativ mit verfiigbaren
Versuchswerten {iberein. Der Rechenaufwand fiir das hier entwickelte numerische Verfahren ist geringer
als 2% dessen bei der Zweizonenmethode fiir dasselbe Problem. Im Gegensatz zu den bestehenden Ein-
zonenmethoden liefert das vorliegende numerische Verfahren glatte Stromlinien und Isothermen—selbst
in der Umgebung der Verfestigungsfront.

IMPUMEHEHME CXEMBbI C BECOBbIMH ®YHKLIUAMH K 3AJJAYAM PA30BOTO
IIPEBPAIIEHMS ITPH HAJTMYWH KOHBEKUIUU U TEIUIONPOBOJHOCTH

Ammoramms—IIpeAnOXCH OAXOK K THCICHHOMY PeHISHHIO 3324 $a30BOro NpeBpallieH st NPH HaMHYHE
KOHBEKIUHM H TEIVIONPOBOJHOCTH, OCHOBAHHBIN Ha CxeMe C BecoBhiMu Qynxumsmvu. Teepaas dasa pacc-
MATPHBAETC] KaK XHIKOCTL ¢ OecKOHe4HOH BA3KOCTHIO. TaKOH NOAXOH MO3BONAET HCMOJIB3OBATH
NOHSATHE 3aBHXPEHHOCTH MOTOKA BO BCe (H3MYECKOM 006J1acTH, BIUIIOYASA IPAHALY Pa3feia KHIKOCTh—
TBEpAOE TEN0. DPPEKTHBHOCTE NPELIOKEHHOTO METOA IIPOBEPACTCA HA IIPAMEpPE YHCTOro oyiosa. Pac-
4eTHH¢  npopmmM  MexdasHBIX  IPaHHI,  Ka4eCTBEHHO  COIJACYIOTCS €  HMMEIOLIAMHCH
IKCHEPHMEHTAILHBIMEA AanHbMH. [IpH 2TOM paspaGoTannuif ducnerusit MeTon Tpebyer Memee 2% oT
ofeMa pacueToB IS ABYX3OHANLHOTO METOXA DeIleHMs paccMaTpwsaemoil 3amaw. B ormmume or
CYIIECTBYIOIUHX OIHO30HANBHBIX METONOB IPEICTABJICHHBH THCICHHBN METOA HO3BOJSET NOJIYYHTHL
TJIaRKHE THHEH TOKA A H30TEPMBI AaXe B OKPECTHOCTH (GPOBTA 3aTBEPACBAHMI.
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