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Abstract-A numerical formulation based on the weighting function scheme is developed in the present 
investigation for convection-conduction phase change problems. The solid phase is regarded as a liquid 
having an infinite viscosity. Such a treatment allows the stream--vorticity formulation to apply over the 
entire physical domain including the liquid-solid interface. The weighting function scheme then is used to 
handle the sharp viscosity jump at the liquid-solid interface. A problem dealing with pure tin is employed 
to test the performance of the present method. The predicted interface profiles are found to agree with 
available experimental data qualitatively. The computation effort required by the present numerical 
technique, however, is less than 2% of that needed by a two-region method for this same problem. Unlike 
the existing single-region methods, the present numerical technique produces smooth streamlines and 

isotherms even in the vicinity of the solidification front. 

INTRODUCTION 

IT HAS been well recognized that natural convection 
in the liquid phase of a phase change material (PCM) 
could have a significant effect on the moving speed 
and the shape of the liquid-solid interface [l-3]. This 
is true even for liquid metals that possess small Prandtl 
numbers. To study the effect of natural convection on 
phase change processes, many numerical inves- 
tigations [415] have been performed. The numerical 
techniques employed in these studies can be classified 

into two-region [4-81 and single-region [9-1.51 
methods. 

In two-region methods, two independent sets of 
conservation equations are derived for each of the 

liquid and solid phases. An appropriate energy bal- 
ance at the liquid-solid interface then is employed to 

couple the two sets of governing equations. Such a 
numerical formulation produces smooth isotherms 
and streamlines in the vicinity of the liquid-solid inter- 
face. However, the liquid-solid interface has an 
irregular shape varying from time to time in most 

practical phase change problems. Under this 
situation, both liquid and solid phases might have 
irregular domains with a Dirichlet boundary con- 
dition at the liquid-solid interface. Hence, an 
algebraic coordinates transformation [4-71 or boun- 
dary-fitted curvilinear coordinates [8] is needed for 

each of the liquid and solid regions. This renders 
the use of the two-region methods very complicated. 
Therefore, some simplification dealing with the geo- 
metric regularity of the interface is generally needed 
as demonstrated by Sparrow et al. [4]. In addition, 
the governing equations based on a two-region 
method will become singular when either the liquid or 

solid phase does not exist. Thus, additional assump- 

tions such as used in refs. [5, 161 are needed at the 
very beginning and the final step of the solidification 

process. 
To circumvent the numerical difficulties encoun- 

tered in the use of the two-region formulations, a 

few single-region methods such as refs. [9-151 have 
been developed. In these single-region methods, the 
evolution of the latent heat during the solidification 
process is embedded in the local enthalpy change rate 
aH/at. Such a treatment has been proven to auto- 

matically satisfy the conventional energy balance con- 
dition at the liquid-solid interface [ 171. Therefore, a 
single set of governing equations can be applied on 
the entire physical domain including the liquid-solid 

interface. The method proposed by Schneider [9] was 
derived by introducing a method for fluid flow [18] 
into the enthalpy-like model [19]. Voller and co-work- 

ers [lo, 1 l] separated the latent heat from the sensible 
heat such that the sensible heat became a continuous 
function across the liquid-solid interface. This treat- 
ment allowed the well-known SIMPLE algorithm [20] 

to be implemented in their enthalpy formulation. 
Bennon and Incropera [ 12,131 developed a continuum 
mode1 by integrating semi-empirical laws with classi- 
cal mixture theory. The mushy zone was formulated 
as a porous medium. Depending on the value of the 
liquid fraction, the permeability has a positive finite 
value in the mushy zone. The value of permeability is 
zero in the solid phase and becomes infinite in the 
liquid. A similar volume-averaged formulation was 
proposed by Beckermann and Viskanta [14] for phase 
change in porous media. This model is able to handle 
phase change in a PCM without a porous matrix, if 
the porosity is assigned unity. Based on the enthalpy 
method developed in refs. [lo, 111, Brent et al. [ 151 
proposed the enthalpy-porosity technique by treating 
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NOMENCLATURE 

,;;; 

Y 
Cl 
GP 

H 

AH 

Ii 

I_ 
P 

P 
PI 

s 

.s 

Ste 
T 

weighting factor defined in equation (I 3) 
right-hand side of equation (I 2) 
specific heat at constant pressure 

[Jkg ‘Km’] 
dimensionless specific heat, C’,;(C’,,)i 
dimensionless latent heat or fraction of 

liquid phase, (H-A)/AH 
gravitational acceleration. 9.81 m 5 ’ 

Grashof number. fl~q!y(T,,- T,)L’(ij;j$)’ 
modified Grashof number, 
(A,-A, )(T,- r,) ‘(C’,,), ’ GI 
total enthalpy [J kg- ‘1 

latent heat [J kg ‘1 
thermal conductivity [W m ’ K ‘1 
width of the enclosure 

static pressure [N m ‘1 
dimensionless pressure, Pp(Lip:) 2 

Prandtl number. /[*iti 
height of the enclosure 

aspect ratio of the enclosure, S/L 
Stefan number. (A,,-A, )/AH 

temperature [’ C] 

:’ 

T,,. T, reference temperatures [ C] 

t 

tc 
u. v 

II, 1 

Vc 

x. Y 

.I’. 1 

time 
characteristic time, pl’:(or<,) 

velocities in the X- and .r-directions, 
respcctivcly [m s ‘1 
dimensionless velocities. I//V, and C’:’ VL. 

respectively 
characteristic velocity, ,$!( pL) 
horizontal and vertical coordinates [m] 

dimensionless coordinates, X/L and Y/L. 

respectively 
AX, AJ’ step sizes in .I-- and r-coordinates, 

respectively. 

Greek symbols 

x dimensionless dynamic thermal 

diffusivity, ~:‘ti, 

P volumetric coefficient of thermal 

expansion [K ‘1 

artificial viscosity for the stream function 
tolerance in convergence criterion 

dimensionless local orthogonal 
coordinate normal to the liquid&olid 

interface. see Fig. 3 
dimensionless tempcratut-c in the liquid. 

(T- 7’,);(T,,- 7-,) 
dynamic thermal diffusrvtty. I<‘(‘,, 

sensible heat, j’:, C,, dT [J kg ‘1 
sensible heat at T, [J kg ‘1 
dimensionless sensible heat. 

(A-A, ):‘(&,-A, 1 
dimensionless dynamic viscosity, /L*/I(: 
dynamic viscosity [kg m ’ s ‘1 
dimensionless local orthogonal 
coordinate tangent to the liquid-solid 

interface. see Fig. 3 [m] 

density [kg m ‘1 
.stq ( I $- Stc) 
dinicnsionlcss time. t ‘t, 
local inclination angle of the intcrfacc 

dimensionless stream function, 
I, = ?ci/;?_r and 1‘ = - ;l$ ?.v 
dimensionless vorticity. iu/?j: - ic~l’i.r. 

Superscript 

0 solution at the previous iteration. 

Subscripts 

E CLlSl 

I quantity based on the freezing point T, 

I property of the liquid phase at the 

freezing point T, 

N north 

P point P 

S south 

W west 

1. 1‘ partial derivatives with respect to .v and 

1‘ 
0 quantity based on T,, or solution at 

previous time step z,,. 

the mushy zone as a porous medium. Such an idea is 
essentially the same as that used in refs. [ 12. 131. 
A survey on recent developments on phase change 
problems can be found in the review paper by 
Viskanta [21]. 

Although the literature on the methodology for 
single-region formulation is continuously growing, 
most of them pose serious numerical difficulties. As 
can be clearly observed from the results presented in 
the literature, all of the existing single-region methods 
[9-151 produce zigzag isotherms and streamlines in 
the vicinity of a liquid-solid interface. This numerical 
error has been proven to arise from improper handling 

ofthe evolution (or absorption) ofthe latent heat [22]. 
The poor solution convergence rate encountered in 
the use of the existing single-region methods might bc 
also attributed to this same reasoning. In the present 
investigation, the enthalpy method proposed in ref. 
[22] will bc cxtcnded such that the effect of natural 
convection can be taken into account in a PCM having 
a distinct freezing point. The solid phase is regarded 
as a liquid that has an infinite viscosity. The weighting 
function scheme [22] then is used to handle the sharp 
discontinuity in the viscosity. Physically speaking, in 
a plane front solidification (or melting) the velocity 
has a discontinuous gradient at the liquid-solid inter- 
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face. A velocity gradient exists on the liquid side due 
to the no-slip condition, whereas the velocity field is 

identically zero on the solid side. Such a physical 

phenomenon can be easily implemented through the 
use of the weighting function scheme [22]. The per- 
formance of the present method will be examined by 
comparing the present prediction with the exper- 

imental data of Wolff and Viskanta [7]. 

THEORETICAL ANALYSIS 

In their investigation, Wolff and Viskanta [7] per- 
formed an experiment to study a two-dimensional 
solidification of pure tin (99.99% pure) in a rec- 
tangular enclosure. Measurements including the 
shape of the liquid-solid interface and the temperature 

distribution in the liquid phase were undertaken for 
a series of time instants. A numerical solution based 
on the two-region method of Ramachandran et al. [5] 

was also obtained for the same physical configuration. 
The results presented in ref. [7] are quite complete 
indeed as compared to previous works on phase 

change problems. Thus, it is convenient to employ the 
problem studied by Wolff and Viskanta [7] to examine 
the performance of the present method. 

Consider a pure liquid tin of uniform temperature 
T, inside a two-dimensional rectangular enclosure 
(0 < X < L and 0 < Y < 5’) with perfect insulation at 
both horizontal walls (Y = 0 and S). At time t > 0, 
the temperature of the vertical wall at X = L is cooled 
to a uniform temperature T, that is below the freezing 
point Tf of the pure tin, while the other vertical wall 
(X = 0) is maintained at T,,. Solidification thus starts 
from the cold wall. In the present physical problem, 

these would be free of thermal and alloy dendrites [23] 
because the working medium in the liquid phase is a 
superheated pure substance. Hence, it is reasonable 
to assume a plane front solidification. This and other 
assumptions needed in the analysis are listed as 
follows : 

(1) the liquid tin is a Newtonian fluid ; 
(2) the density of the pure tin is constant in the 

entire physical domain (p = p, = constant) except for 
the buoyancy term in the momentum equation ; 

(3) the shrinkage-caused flow is negligibly small as 
compared to the buoyancy-driven flow ; 

(4) the Boussinesq approximation is valid ; 
(5) the flow in the melt is laminar and two-dimen- 

sional ; 
(6) the liquid-solid interface has a smooth profile. 

Based on these assumptions and the dimensionless 
transformation 

x=X/L, y= Y/L, u= u/v,, v= v,vc 

K = d/(PL), P = p&/p?)*, p = p/p: 

i= (A-A,)/(& -A,), u = K/lc, 

f’= (H-N/AH, z = t/t,, t, = pL2/(mc,) 

0 = (T- T,)/(T, - T,), s = S/L (I) 

the governing equations can be expressed as [ 10,241 

!!!+“u=O 
ax ay 

(2) 

+Pr,v;=;(~~)+~(~!$. (5) 

The associated boundary conditions are 

u = 0, v = 0, 1” = 1 atr=O 

24 = 0, v=o, i=l atx=Oandz>O 

u=o, v=o, i=o atx= landz>O 

u = 0, V=O, a1/@=0 aty=Oandr>O 

aujay = 0, v = 0, anjay = 0 

at y = s and z > 0. (6) 

In equations (3)-(5), the parameters Pr,, Gr and r~ are 
defined by 

Pr, = ~L:/Ic, = Pr(T:) 

Gr = p2d(T~ - TJL31(p,*)* 

o = Ste/(l +Ste), Ste = (&,-&)/AH. (7) 

As remarked by Wolff and Viskanta [7], a free surface 
forms on the top of the melt region at 7 > 0 due 
to the shrinkage of the pure tin (about 4.2%) when 
solidified. Hence, in equations (6) a no-shear bound- 
ary condition is assumed at y = s. It is noted that 
equations (3) (4) and the velocity boundary con- 
ditions specified in equations (6) will reduce to 
u = v = 0 if an infinite value is assigned to the 
viscosity. Thus, the system of governing equations 
(2)-(6) is valid also in the solid phase as long as the 
solid is regarded as a liquid of infinite viscosity. 

To simplify the problem, the pressure is eliminated 
from equations (3) and (4) to yield 
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where the stream function I,/J is defined such that 
II = i$!c?_r, and (’ = -ii$/?.r. The vorticity is defined 

by (11 = c?u/C~~-il~ii.~-. Based on this definition. the 
initial and boundary conditions for the stream function 
and the vorticity can be written as 

I// = 0. C’) = 0 at T = 0 

lb = 0, CO = i’$:?s’ at .Y = 0 and 1 

t/G = 0. (0 = i’$;‘?r’ at j’ = 0 

$ = 0. 0, = 0 at .I’ = .v. (10) 

Note that in equation (8) the simple notations 
,n, = ip;?.r and /l! = ?Ll/?r have been used. The pa- 

rametcr Gr” = p’y[j(A,,-A, )Li/(C,,),(pF)2 is a 
modified Grashof number and c;, = C’,/(C,,), is a 
dimensionless specific heat. It appears that equation 
(8) reduces to V’to = 0 in the solid phase, if the vis- 
cosity of the solid phase is assumed uniform and inh- 

nite. Thus. the vorticity will be zero in the solid phase 
as long as the vorticity has a zero value at all of the 
boundaries of the solid phase. In equation (9). the 
artificial viscosity ;’ and the dimensionless latent heat 
f’ are detined by 

i- X and f = 0 if i ,< ‘L, (1 la) 

, - I and f= I if i > i., (lib) 

for the solid and liquid phase, respectively. Hence. 
equation (9) guarantees a zero velocity field for the 
solid phase due to an infinite viscosity, whereas for 
the liquid phase, equation (9) becomes the stream 
function equation as in conventional stream-vorticity 
formulations. The use of the artificial viscosity ;’ is 
very important in treating the discontinuity of the 
velocity gradient normal to the liquid-solid interface. 

This will be demonstrated later. Mathematically, equa- 
tion (9) can be applied on the entire physical domain 
including the liquid&olid interface, When a numerical 
scheme is applied. however. the .flvalue possesses a 
discontinuity inside a finite control volume covering 
both liquid and solid phases. Thus. care must be exer- 
cised in evaluating the /-value for such a control volume. 

Equation (9), in fact, is identical to heat conduction 
in a two-dimensional composite material with heat 
generation if the liquid and the solid phases are treated 
as two different materials and the stream function $ 
and the vorticity (1) are regarded as temperature and 
heat sink, respectively. It is noted that the vorticity (r) 

has a finite value in the liquid phase and a zero \aluc 

in the solid phase (due to a zero velocity). Thus. the 
heat sink is needed to consider for the liquid phase 
only. For convenience. the value ofthe vorticity in the 
solid phase of a finite control volume covering both 
liquid and solid phases is assumed equal to that of the 
liquid phase inside this same control volume. Such an 
assumption would overestimate the heat sink for that 
control v’olume. Therefore. this heat sink should bu 
multiplied by the liquid fraction inside the control 
volume. This can be achieved easily by treating 113~’ 

/-value appearing in equation (9) as the liquid fraction 

inside the control volume. A simple method for the 
evaluation of the f~valuc can be found in ref. 1221. 

METHOD OF SOLUTION 

Equations (5), (8) and (9) along with the boundary 
conditions (6) and (10) constitute a system of coupled 
non-linear partial differential equations. In this system 
of equations, both real and artificial viscosities (p and 
y) have an infinite value in the solid phase. Thus. them 

exists sharp discontinuitics in the ~1 and 7 values at the 
liquid&olid interface. Fortunately. such dis- 
continuities can be effectively handled by the use of 
the weighting function scheme developed in ref. [22]. 

Figure 1 shows a grid with schematic liquid --solid 

interfaces. The dashed curve represents an interface 
such that point P is located in the solid region, whereas 
the solid curve stands for the case that point P is in 
the liquid region. Based on the symbols defined in Fig. 
I. the weighting function scheme [22] for equation (9) 
can be expressed as 

The notation used here is the same as that in ref. 
[22]. For convenience, however, the names of the grid 
points are used to define the boundaries of the inte- 
grals. Suppose the interface passes through points N* 
and W* (see the dashed curve) such that points P, S 
and E are located in the solid region while points W 
and N are in the liquid region. From equations (12). 
one sees that the ‘thermal resistances’ are 

W, = WW*+W*P/;l = W-W*. E, = PE/;: = 0 

S, = SPi’;l = 0, N, = PN*I;‘+N*N = N*N (13) 

where AB denotes the distance between points .4 and 
B. Obviously, the thermal resistance is zero in the 
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FIG. 1. A grid cell with a schematic liquid-solid interface in 
case point P is in solid phase (dashed curve) and point P is 

in liquid phase (solid curve). 

intervals P-S and P-E due to a perfect ‘thermal con- 
ductivity’ (y = co), whereas that in the intervals P-N 
and P-W is non-zero. Under such a situation, the 

weighting factors a, and uN will be negligibly small 
as compared to a, = cc and uE = co. As a result, the 
$-value in the solid region (point P) is independent of 
that in the liquid region. This leads to $ = 0 for the 
solid phase due to the homogeneous boundary con- 
ditions (10) around the solid region. Thus, the $-value 
at a point can be directly assigned zero if that point 

is located in the solid region. In case point P is in the 
liquid phase when the interface goes through points 
E* and S* as illustrated by the solid curve, the total 
‘thermal resistances’ become 

W, = WP, E, = PE*+E*E/y = PE* 

S, = SS*/y+S*P = S*P, N, = PN. (14) 

From equations (14), one sees that the thermal resist- 

ance in the interval P-E is equal to that in the interval 
P-E* due to a perfect thermal conductivity in the 
interval E*-E. This is equivalent to assigning 
tiE. = $E = 0. Generally speaking, the $-value at 
point P would not be zero such that a discontinuity 
in the velocity gradient exists at the interface. This will 

cause a vorticity discontinuity across the liquid-solid 
interface. When points W, E, S, N and P are all at the 
liquid phase, equation (9) reduces to V’$ = w such 
that it can be solved as in a conventional problem 
without phase change. 

Like the stream function, the vorticity in the solid 
phase is identically zero. On the liquid side of the 
liquid-solid interface, however, there exists a non- 
zero boundary vorticity due to a friction force arising 
from the no-slip condition. This implies that the vor- 
ticity is not a continuous function across the liquid- 
solid interface. Thus, the boundary vorticity at the 
interface must be estimated before equation (8) is 
solved. To accomplish this, let (5, q) be local orthog- 
onal coordinates located at point E* with q normal to 
the interface represented by the solid curve as shown 
in Fig. 1. Assume the grid cell is sufficiently small such 

that the profile of the liquid-solid interface inside the 

grid cell can be approximated with a straight line. 

Based on this, the boundary vorticity at point E* is 

computed from 

or 

(15b) 

where 4 is the inclination angle of the liquid-solid 
interface measured from the horizontal. Similarly, the 

boundary vorticity at point S* is 

ws* = (COK * 4) a’+/@‘. (16) 

In the solution procedure, the vorticity at point E is 

assigned as oE = wE* while the concept of infinite 

viscosity is applied in the interval E*-E. It should be 
noted also that all of the vorticity in the solid region 

must be directly assigned zero except for a few points 
near the interface like point E. This treatment is only 
for numerical convenience. The real vorticity, 
however, is still zero at point E. After equations (5) 
and (8) are discretized by the use of the weighting 
function scheme [22], the resulting algebraic equations 

as well as equations (12)-(14) for the stream function 
can be solved by the SIS solver [25]. At each time 
step, the computations should be repeated until the 
solutions satisfy the convergence criteria 

Max I$-$“1 
IMax $-Min $1 

< E* 

Max lo--wOl < E 

IMax o-Min 01 ’ II’ 

(174 

(17b) 

Max l~-1ol < Em (17c) 

where 11/O, o” and 1’ denote the solutions at the pre- 
vious iteration. The values of the tolerances Ed, E,, and 
Em are not necessarily the same. For convenience, the 
present algorithm is summarized as follows. 

(1) Guess I(x,y) and o(x,v) at time z. 
(2) Locate the interface and compute the f-value 

for each control volume. 
(3) Solve the stream function Il/(x,y) from equa- 

tions (12)-(14). 
(4) Evaluate the velocity components by u = a$/ay 

and v = -~~jax. 

(5) Find the vorticity along the boundaries of the 

liquid region and solve equation (8) to obtain w(x, JJ). 
(6) Renew I(x,y) from equation (5). 
(7) Check the convergence criteria (17). If the cri- 

teria are satisfied, then go to the next step. Otherwise, 
return to step 2. 

(8) If z = z,,,, then stop the computations. Other- 
wise, let tie = +, w. = w, 3,, = 1 and f. = ,f and return 
to step 1 for the next time step. 

RESULTS AND DISCUSSION 

Numerical results were obtained for the cases of 
(r,, T=) = (233”C, 229”(Z), (233”C, 226°C) and 
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Table 1. Thermophysical properties of pure tm 

Freezing point T, = 23 I .9 C 
Density p, = 6992 kg m ’ 
Latent heat AH = 59.50 kJ kg ’ 
Expansion coellicient /I’ = I .OhO x IO ’ K ’ 
Dynamic thermal diffusivity [kg m ’ s ‘J 

h-=0.2923-3.695x IO J7 I’< 231.9 
h = 0.101 I +7,.59x IO ‘T T,, 231.9 

Specific heat [J kg- ’ K ‘1 
C’,> = 215.1 +0.22T T $ 23 I .9 
C‘,> = 255.4 7’2 231.9 

Dynamic viscosity [kg m ’ s ‘1 
/I* = ‘( 7’< 131.9 
I’* = 3.004x IO ‘-5.53 x IO “T 

+3.74x IO “T? 7-3 231.9 

Prandtl number 
Pr = 1% TG 231.9 
Pr=?.729xl0 ‘-5.713x10 ‘7‘ 

+3.89 x IO x7“ T 2 23 I .9 

(234 C, 226 C) in an enclosure having the size 
L = 8.89 cm and the aspect ratio s = 0.75. Their cor- 
responding (Str, Gv*. j.,) values are, respectively. 

(0.0177, 3.977 x 10’. 0.7329), (0.0310, 6.985 x IO’, 
0.8479) and (0.0353. 7.950 x 107. 0.7449). These 

ranges of temperature give rise to a superheat in the 
liquid phase and a subcool in the solid phase (ix. 
r, = 23 1.9 C for pure tin). Table 1 shows the thermo- 
physical properties of the pure tin used in the com- 
putations. The Prandtl number Pr, in the energy equa- 

tion (5) has the value of 0.01613 for pure tin. Such 
information has been well documented in the litcra- 

ture [26, 271 

Figure 2 reveals the streamlines for the case ot‘ (7.,,. 
7, ) = (233’ C. 229’ C) at t = 0.165 and 1.896 h. The 
minimum $-value in Fig. 2(a) is -409.5. This means 
that the natural convection at t = 0.165 h is a cloch- 
wise circulating flow with a strength of 409.5. The 
liquid tin near the interface (where $ = 0) is cooled 
such that it gains a downward velocity due to an 

increase in the density. In contrast. the liquid tin 
obtained an upward driving force on the vicinity ol‘ 
the heated wall (_Y = 0). Thus. a clockwise circulating 

flow forms in the liquid region. At I = 1.896 II, the 
strength of the natural convection reduces LO 749.4 
owing to the diminishing of the liquid phase as obser\ 
able from Fig. 2(b). 

The corresponding isotherms (1” = constant) of Fig. 
2 arc prcsentcd in Fig. 3. The dashed curve labcllcd 
with i. = 0.7329 is the liquid&olid interface. As shown 
in Fig. 3(a). the interface profile is essentially a vertical 
straight line at t = 0.165 h. However. the strong cir- 
culating flow distorts the isotherms in the liquid 

region. In a region near the top surfxc, the hot liquid 
flows from the heated wall towards the interfacc. The 
isotherms having j. = 0.9 thus bends to the right. Thi5 
causes a large temperature gradient normal to the 
interface such that the solidification rate is dcprcsscd. 
With a similar reasoning, the solidification has a fastet 
speed at the bottom of the cnciosure. Thercforc. the 
liquid&olid interface has a sinuous profile at I = I.896 
h (see Figs. 3(b) and 3(b)). 

As mentioned earlier. a no-slip velocity prevails a1 
the top of the liquid at the very beginning of the 
solidification process. This particular boundary con- 
dition will retard the fluid flow. Thus. a faster sol- 

(a) t = 
0.165 h 

+*= 0; 0 0 
-409.5 

II 
s 

(b) t = 1.696 h 

J&,= -249.4 

(a)t=O.l65 h 

l-‘rc;. 2. Streamlines with an increment of Alj/ = 40 for (T,,. FIG. 3. Isotherms with an increment ol’ Ai, =: 0. I lor (I,,. 
T, ) = (233°C. 229, C) at (a) / = 0.165 h and (b) I = I .X96 h. 7’, ) = (233 C. 229 C) at (a) I = 0.165 h and (h) / I.896 11. 
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9 I ( , , ,,I,,,,,, 

8- - no-shear - 

_.___.__ no-slip - 

7- 

012 3 4 5 6 7 8 8.89 

X (cd 

FIG. 4. Interface profiles for (T,, T,,) = (233”C, 229°C) at 
t = 0.077, 0.165, 0.529, 1.462 and 1.896 h (from right to 

left). 

idification speed at the top of the liquid can be 
expected if the no-slip boundary condition is used 

instead of the no-shear boundary condition. To exam- 
ine such a difference, the interface profiles based on 
each of the two different boundary conditions are 
compared in Fig. 4. The five curves from right to left 
are, respectively, for t = 0.077,0.165,0.529, 1.462 and 
1.896 h. From Fig. 4, one sees that the interface pro- 
files indeed are not very sensitive to this boundary 
condition. 

Figure 5 shows comparisons of the present interface 
profiles (no-shear) with the numerical results and the 
experimental data of Wolff and Viskanta [7]. The 
experimental data [7] are denoted with symbols. 
Again, the five interface profiles of each result are for 
t = 0.077, 0.165, 0.529, 1.462 and 1.896 h (from right 
to left). However, the numerical predictions of Wolff 
and Viskanta [7] (the dashed curve) was only up to 
t = 1.462 h. In their numerical study, Wolff and 
Viskanta [7] employed the two-region method [5] with 
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FIG. 5. Comparisons of interface profiles for (T,,, 
r,,) = (233°C 229°C) at t = 0.077, 0.165, 0.529, 1.462 and 

1.896 h (from right to left). 

the assumption that the curvature of the interface 
profile was negligibly small. Unfortunately, this 

assumption led to an interface having a cavity of larger 
curvature at t = 1.462 h (see Fig. 5). In fact, no cavity 
could be found in the experiment. Wolff and Viskanta 
[7] attributed this cavity to the no-slip boundary con- 
dition employed in their computation. However, in 
the use of the present numerical technique both no- 
slip and no-shear boundary conditions do not give 

rise to any cavity on the interface (see Fig. 4). Thus, 
the cavity predicted in ref. [7] is believed to arise 

from the numerical error of the two-region method 

employed [5]. 
From Fig. 5, one sees also that the measured data 

has a smaller value than the present prediction does 
at the earlier times t = 0.077 and 0.165 h. This might 
be attributed to the thermal inertia of the experimental 

setup. As reported by Wolff and Viskanta [7], in their 

experiment approximately 0.033 h (0.033/0.077 = 
42.9%) elapsed before the desired temperature T, 
was reached at the cold wall. Also, at the bottom of 
the test region the imperfect insulation might have 

speeded up the solidification rate as remarked by 
Wolff and Viskanta [7]. This might account for the 

fact that the measured solidification thickness is larger 
than that of the present prediction in the vicinity of 

the Pyrex glass plate that forms the bottom of the test 
region (y = 0), especially at t = 0.529 h. At a later 
time, say t = 1.896 h, the liquid region becomes quite 
narrow while its superheat is still maintained at 

To - Tf = 1.1 “C. This implies that the horizontal tem- 
perature gradient in the liquid region would increase 
as the solidification proceeds. The solidification speed 

thus is depressed until an equilibrium solidification 
thickness is accomplished eventually. Under this situ- 
ation, the heat loss from the bottom could be com- 

pensated by the heating boundary condition imposed 
at x = 0. Thus, good agreement between the exper- 
imental data [7] and the present prediction can be 
once again observed at t = 1.896 h. 

To examine the uncertainty in Wolff and Viskanta’s 
experimental data [7], their measured solid-phase 
thickness vs time is presented in Fig. 6 for the three 
representative heights y/s = 0.0, 0.5 and 1.0. The pre- 
sent result is also plotted in Fig. 6 for comparisons. 
From Fig. 6, it is seen that the present numerical 
method predicts a smoothly increasing solid thickness 
with a decreasing solidification speed. This is con- 
sistent with the physical reasoning for a PCM having 
a distinct freezing point (see Fig. 4 of ref. [22]). The 
measured solid thickness, however, has a zigzag vari- 

ation in the time coordinate especially at the bottom 
of the test region (y = 0). Nevertheless, a qualitative 
agreement between the present predictions and the 
experimental data [7] is observable from Fig. 5. 

The predicted liquid temperatures based on no- 
shear and no-slip conditions are compared with the 
measured data in Fig. 7 for t = 0.077 h and in Fig. 8 
for t = 0.529 h. Figures 7 and 8 clearly reveal that the 
no-shear condition decreases the temperature due to 
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Fr(,. 6. Variation of solid thickness at J’:.Y = 0.0. 0.5 and 

an enhanced heat transfer. However, it gives rise to a 

larger temperature gradient normal to the interface at 
the height J,/.s = 0.9. This is the major reasoning why 
the solidification speed based on no-shear is slower 
than that based on no-slip, although it is not so sig- 
nificant (see Fig. 4). From Fig. 7. the measured data 
arc seen to be considerably smaller than the predic- 
tions. Fortunately, this discrepancy is greatly 

improved in the region of J/S > 0.5 at a later time 
I = 0.529 h as shown in Fig. 8. In fact, the discrepancy 
between the measured temperature and the prediction 
is within the error of the measurement. The thermo- 
couple used by Wolff and Viskanta [7] has an accurac) 
of +O.l C whereas the superheat in the liquid tin 01 
their experiment is only 1. I C. 

To investigate the effect of the subcool in solid, the 
computations were repeated with T, = 226 C. This 
implies that the subcool in the solid is increased from 
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FIG. 7. Comparison of liquid tcmperaturcs for J, Y ~-7 0. I. FIG. 9. Interface profiles for (7‘,,. 7, j = (233 C. 226 C’) at 

0.5 and 0.9 at r = 0.077 h. t = 0.077.0.165.0.529.0.799 and 0.931 h (from right to left). 
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2.9 to 5.9 C while the superheat is maintained at 

I. I C. Figure 9 illustrates the resulting interface pro- 
files based on the no-shear condition for various time 
instants f = 0.077, 0.165. 0.529, 0.799 and 0.931 II 

(from right to left). The measured data [7] for the 
same time instants are also plotted in Fig. 9 for com- 
parison. A similar work for the cast (7,). T, ) = 
(234 C. 226’C) was performed to study the effect 01 
superheat in the liquid. The results of interface profiles 
are shown in Fig. IO for I = 0.077, 0.165. 0.529. 1.146 
and 1.462 h (from right to left). In the latter case, the 
superheat in the liquid and the subcool in the solid 

arc, respectively. 2. I and 5.9 C‘. 
On comparing the predictions in Fig. 9 with that in 

Fig. 5, one sees that increasing 1 he subcool of the solid 
will speed up the solidification. This gives rise to a 
faster diminishing for the liquid region such that the 
effect of the natural convection in the liquid region is 
decreased. Thus, the interface profiles in Fig. 9 arc 
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FIG. 10. Interface profiles for (To, T,) = (234°C 226°C) at 
t = 0.077,0.165,0.529, 1.146 and 1.462 h (from right to left). 

flatter than that in Fig. 5. This trend is reversed when 

the superheat in the liquid is increased as can be seen 
by comparing the predictions in Figs. 9 and 10. As 
pointed out by Wolff and Viskanta [7], the heat loss 
from the bottom of the test region could be an impor- 
tant error source for their measurement. This is even 
worse when the subcool of the solid is increased (see 
the measured data at y = 0 and t = 0.93 1 h in Fig. 9). 
It is interesting to note that the results presented in 
Fig. 10 are based on both large superheat and large 
subcool. As a result, the heat loss enhances the sol- 
idification speed in the vicinity of y = 0 at earlier time 
(t < 0.529 h). At later time (t > 1.146 h), however, 
the heated wall (x = 0) has a strong depression on the 
solidification as mentioned earlier. This might account 
for the fact that the agreement between the measured 
data and the present prediction in Fig. 10 is quite 
good at the initial and final times, but very poor at 
intermediate times. 

In the present computations, a uniform grid system 
with 41 x 31 grid points (i.e. Ax = A_r = 0.025) was 
used for the first case (T,,, T,) = (233’C, 229°C). 
However, the numerical solutions were found essen- 
tially unchanged when the step size was doubled 
(2 I x 16 points). Hence, the step size Ax = AJJ = 0.050 
was employed for the other two cases (T,,, 
T,) = (233°C 226°C) and (234°C 226°C). A variable 
step size was employed in the time coordinate such 
that numerical results for some particular time in- 
stants (e.g. t = 0.077,0.165,0.529, 1.462 and 1.896 h) 
could be obtained. Fortunately, the numerical solu- 
tion was not sensitive to the time steps either. Hence, 
large time step sizes (only 32 time steps for Fig. 4, 35 
steps for Fig. 9 and 50 steps for Fig. 10) were used in 
the present computations. For the present problem, 
the optimum SOR values required by the SIS solver 
[25] were found in the range of 0.2-0.6 for the stream 
function, 0.1-0.3 for the vorticity and 0.1-0.25 for the 
enthalpy. In all of the computations, the convergence 
criterion E* = E,,, = 0.005 and E~ = 0.0005 was used. 

In their numerical study, Wolff and Viskanta [7] 

employed the two-region method [5] with stream- 
vorticity formulation for the liquid flow. A grid system 

having 31 x 3 1 grid points was used in each of the 
liquid and solid regions for the case of (T,, 
T,) = (233°C 229°C). Numerical results were 
obtained only up to t = 1.462 h. For such a compu- 

tation, a very large computational cost (7.08 CPU h 
on a CYBER 205 supercomputer) was reported. 
Hence, only one case was computed in their study. In 
the use of the present method, however, only 0.73 

CPU h were required on a CYBER 840 computer for 
this same case with 41 x 31 grid points and 32 time 

steps (up to t = 1.896 h). Thus, the computation effort 
needed by the present method is less than 2% of that 
needed in ref. [7]. The high efficiency of the present 

method seems to come from the combined effects of 
the particular treatment on the latent heat [22], the 
single-region formulation with the weighting function 
scheme [22] and a strongly implicit solver [25]. As a 

final note, it is mentioned that the present numerical 
technique produces smooth streamlines and isotherms 
(A = constant) even in the vicinity of the liquid-solid 

interface. This is a unique feature of the present 
numerical technique among the existing single-region 
methods [9-151. 

CONCLUSIONS 

The enthalpy formulation developed in ref. [22] is 

extended in the present investigation for convection- 
conduction phase change problems. The solid phase is 

regarded as a liquid of infinite viscosity. The weighting 
function scheme then is employed to treat the sharp 
viscosity jump across the liquid-solid interface. Also, 
an artificial viscosity is introduced to the stream func- 
tion equation to allow for a shear stress at the inter- 
face. From the results of computations for a sol- 
idification of pure tin, the following conclusions can 
be drawn : 

(1) Unlike the existing single-region methods, the 

present numerical technique produces smooth stream- 
lines and isotherms even in the vicinity of the liquid- 
solid interface 

(2) The present predictions are not sensitive to the 
spatial and time step sizes. 

(3) The computation effort required by the present 
technique is less than 2% of that needed by the two- 
region method [7] for the same problem. 

(4) No cavity is predicted at the liquid-solid inter- 
face. This agrees with the experimental data [7]. Thus, 
the cavity produced by the two-region method [7] 
at the liquid-solid interface is believed to arise from 
numerical errors. 
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APPLICATION DU SCHEMA DES FONCTIONS DE PONDERATION AlJ?i PROBL.EMES 
DE CONDUCTION CONVECTION AVEC CHANGEMENT DE PHASE 

R&um&Une formulation numtrique baste sur le scht-ma dcs fonctions de pondCration cst dkveloppke 
pour les problimes de conduction-convection avcc changement de phase. La phase solidc es1 considPrec 
comme un liquide ayant une viscositb infinie. Ccla permet d’appliquer la formulation fonction de couran- 
vorticitt? ii tout le domaine physique en incluant I’interface liquide solide. Un probl&me avcc dc I‘ktain pur 
cst consid&+ pour tester Its performances de la pri-sentc mbthode. Lcs profile calculCs de I’intcrface 
s’accordent qualitativcment avcc les donnkes exp&%nentaics diaponibles. L’investissement de calcul est de 
2% inft-rieur Li ce que demande la mtthode des dew rkgions pour le mZmc probltme. Contrairement aux 
mt-thodes existantes li une seule &gion. les lignes de courant et les isothermes sont continues mEme au 

voisinage du front de solidification. 
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ANWENDUNG VON GEWICHTUNGSFUNKTIONEN AUF PROBLEME DES 
PHASENWECHSELS MIT KONVEKTION UND WARMELEITUNG 

Zusammenfassung-Die vorliegende Untersuchung beschgftigt sich mit Konvektion und W&meleitung 
beim Phasenwechset. Hierzu wird mit Hiife von Gewichtungsfunktionen ein numerischer Ansatz formuliert. 
Die feste Phase wird als Fliissigkeit mit unendli~h groDer Zahigkeit betrachtet. Dieses Vorgehen erlaubt 
die Anwendung des Stromfunktion-Wirbeltransport-Verfahrens im gesamten Bereich ~inscblieBli~h der 
flfissig/festen GrenzflBche. Die Gewichtungsfunktionen werden zur Darstelhmg des starken Zghig- 
keitssprunges an der fliissig/festen Grenztlache angewandt. An einem Beispiel mit reinem Zinn wird die 
vorliegende Methode iiberpriift. Die ermittelten GrenzflLchenprofile stimmen qualitativ mit verfiigbaren 
Versuchswerten iiberein. Der Rechenaufwand fur das hier entwickelte numerische Verfahren ist geringer 
als 2% dessen bei der Zweizonenmethode fiir dasselbe Problem. Im Gegensatz zu den bestehenden Ein- 
zonenmethodel~ liefert das vorliegende numerische Verfahren glatte Stromlinien und Isothermen-selbst 

in der Umgebung der Verfestigungsfront. 

IIPHMEHEHME CXEMbI C BECOBbIMM cPYHKIJH5IMM K 3A&4YAM cDA3OBOT0 

l-lPEBPAnfEHMII i’iPki HAJIklWUi KOHBEKIJHH ki TEfIJiOfIPOBO~HOCTH 

~~~~~~~o~e~ nomo~ E ~~e~o~ pemerimo 3was +a3o~oro ~Bp~eH~~ npkt ~anwma 
x0~~eu@i8i H Ten;ronpoBo~ocTH, oc~ona~ti Ha CxeMe c WCOB~%~H &HKL@WMH. Teepns~ @3a pact- 
MaTpHBaeTCx XPK XWmOCTb C 6eCKOHe’iHOfi BR3ROCTbIO. TaKoti llO,&XOn lIO3BOJIWT IfCllOJIb30BaTb 
noHffwe 3amixpeHziocTu noToxa BO sceii @i3w1ecx0Zi o6nann, muwwn rpaHHuy pasnena IKHIIKOCT~- 
Tsepnoe TeJIO. 3dxpepTtiBHOCTb npenno~e~oro MeToaa IIposepneTcn Ha npnMepe YIIcToro OJIOBa. Pac- 
YeTHue np4=a Mex@3mdx rpamm KaWCTBeHHO CornacyIOTcr c memrqmsicn 
3KCIlepSiMeHTiUIbHbIME RaHm.tMH. np&f 3TOM ptU~6OTaHHb1i? SWMiEid MeTO.Il Tpe6yeT MeHee 2% OT 
oefaehla pacpeToB aJuI ~By~H~bHOrO MeToJta peIueHaa ~MaTpH~eMo~ 3aLIiiw. B OTJIwme OT 
~~B~~X 0~03OH~bH~ MCTOaOB II~&T~BJBZIii& %iCJRZHb& MeTOR lIO3BOJI5ET lTOS)‘¶EiTb 

rnanx5ie JuimiR Toxa R Euo~ephfar ,uaxe s oxpecr~ocr~ @poffFa 3aTnepneaaaar. 


